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Abstract

The paper presents a thermodynamically consistent formulation for nonlocal damage models. Nonlocal models have

been recognized as a theoretically clean and computationally efficient approach to overcome the shortcomings arising in

continuum media with softening. The main features of the presented formulation are: (i) relations derived by the free

energy potential fully complying with nonlocal thermodynamic principles; (ii) nonlocal integral operator which is self-

adjoint at every point of the solid, including zones near to the solid�s boundary; (iii) capacity of regularizing the

softening ill-posed continuum problem, restoring a meaningful nonlocal boundary value problem. In the present ap-

proach the nonlocal integral operator is applied consistently to the damage variable and to its thermodynamic con-

jugate force, i.e. nonlocality is restricted to internal variables only. The present model, when associative nonlocal

damage flow rules are assumed, allows the derivation of the continuum tangent moduli tensor and the consistent

tangent stiffness matrix which are symmetric. The formulation has been compared with other available nonlocal

damage theories.

Finally, the theory has been implemented in a finite element program and the numerical results obtained for 1-D and

2-D problems show its capability to reproduce in every circumstance a physical meaningful solution and fully mesh

independent results.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Post-elastic behaviour of quasi-brittle materials is micro-mechanically characterized by many complex

mechanisms, such as nucleation, coalescence and development of micro-cracks and micro-defects. These

complex dissipative mechanisms, to some extent, can be phenomenologically represented by continuum

damage constitutive models (Lemaitre and Chaboche, 1990; Krajcinovic, 1996). Besides the degradation of

the material elastic properties, damage induces a remarkable overall strength reduction when a certain

damage threshold is attained. This phenomenon, called strain softening, has been recognized as a source of
theoretical and computational difficulties for continuum based structural modelling, which are substantially
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originated by constitutive instability matters. Classical softening continuum descriptions display the lo-

calization of the strains into a band of zero thickness with the paradoxal consequence of structural failure

with zero energy dissipation. On the other hand, standard finite element discrete solutions are meaningless,

being their results pathologically affected by the employed mesh size and orientation (damage tends to
concentrate only along one single finite element layer). In order to overcome the above mentioned short-

comings many remedies have been proposed, which are commonly called regularization techniques.

The most simple regularization technique is probably the fracture energy regularization approach

(Ba�zzant and Cedolin, 1979; Ba�zzant and Oh, 1983; Este and Willam, 1992; Comi and Perego, 2001a). This

technique is basically a computational strategy for finite element solutions which, observing that damage

localizes into a band one element thick, defines a material fracture energy density scaled according to the

size of the elements. In this way the energy dissipated into the band is an objective quantity and the overall

structural response is mesh independent, at least as long as the element size is kept greater of the locali-
zation band. Despite the fact that this approach is quite simple and also efficient to apply, it does not

provide the spatial damage distribution into the band, suffers of the lack of convergence for mesh size

smaller and smaller inside the band thickness and it has neither a continuum counterpart nor a micro-

mechanical justification.

Advanced regularization techniques require the definition of enriched continuum models, in which long

range interaction forces, traditionally neglected in classical continuum theories, appear. These theories have

as common feature the presence of one, or more, internal length parameters. The internal length has to be

intended as a material constitutive parameter aimed to describe the nonlocal micro-interactions typically
produced in an heterogeneous media suffering a micro-decohesion (i.e. damage) process.

Among these theories the most robust regularization approaches, with clear micro-mechanical inter-

pretations, are the so-called nonlocal approaches. Nonlocal approaches are defined either in a strong form

(spatial integral) (Eringen, 1981; Pijaudier-Cabot and Ba�zzant, 1987; Borino et al., 1999; Ganghoffer et al.,

1999) or in a weak form (spatial higher gradients) (Aifantis, 1984, 1992; de Borst and M€uuhlhaus, 1992; de
Borst and Pamin, 1996; Addessi et al., 2002). Substantially, for nonlocal materials the constitutive relations

are not pointwise relations but rather they involve either integral average values, or higher spatial gradients.

In every nonlocal model the material reproduced is not a ‘‘simple material’’, in the sense of Noll (1972).
Nonlocal theories where originally developed for the description of linear elastic heterogeneous materials

and often applied to linear elastic fracture mechanics problems where high stress gradient fields are ob-

served in the neighbour of sharp cracks with stress singularities at the crack tips. Nonlocal elastic theories

allow to remove the stress singularity and to recover a regularized finite value stress field everywhere.

Recently, nonlocal elastic models are returned to be the subject of new studies and ongoing researches

(Polizzotto, 2001), also because they can be closely related to heterogeneous continua and continua with

micro-structure (Luciano and Willis, 2001).

Nonlocal models have been introduced for strain softening materials with a rather different intent from
the one pursued in elasticity. Namely in the softening regimes, no matter if induced by damage or by strain-

softening plasticity, the purpose is to regularize the inelastic dissipative modes associated to the strain

softening and then to re-establish a well posed boundary value problem. In this view the variables that need

to be regularized are solely the ones related to the dissipative mechanism, i.e. the ones that explicitly appear

in the dissipation functional. As observed by Pijaudier-Cabot and Ba�zzant (1987), in the specific damage

context, the damage variable in itself is a perfect candidate for being treated as nonlocal. This choice has a

further strength since physical justifications on the ground of micro-crack interactions, stored energy re-

lease from a finite zone around the crack and material heterogeneity, can be invoked (Ba�zzant, 1984, 1991;
Ba�zzant and Planas, 1998).

In this paper a recent approach to nonlocal dissipative problems is extended to nonlocal damage

problems. The theoretical framework is based on a thermodynamic formulation originally developed in the

context of strain-softening plasticity (Polizzotto et al., 1998; Borino et al., 1999). At difference of Benvenuti
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et al. (2000, 2002), the present approach considers as nonlocal the damage variable rather than the damage-

hardening internal variable and then, as observed by Pijaudier-Cabot and Ba�zzant (1987), Comi (2001) and

Comi and Perego (2001b,c), it allows, in case of linear isotropic damage models, a rather effective numerical

implementation. In fact, for this choice of the nonlocal variable in the predictor-corrector classical iterative
computational scheme, the damage corrector phase can be enforced locally at each Gauss integration point

without the honerous nonlocal iterative correction scheme used in Str€oomberg and Ristimnaa (1996), Borino

and Failla (2000), and Benvenuti et al. (2000, 2002). Besides being thermodynamically consistent, the

present nonlocal damage formulation utilizes a nonlocal integral operator which is self-adjoint, ensuring

the preservation of uniform fields for both the nonlocal damage and its thermodynamic conjugate force at

every point of the domain, including the zones close to the body�s boundary avoiding the difficulties

observed by Comi and Perego (2001c).

The paper is organized in the following fashion. After the present Introduction, the nonlocal damage
concepts are presented in Section 2 and the new idea of symmetric nonlocal weight operator is discussed

and justified. Section 3 is devoted to framing the model in general thermodynamics of nonlocal media.

Section 4 presents the associative damage laws and shows how to derive a principle of maximum dissipation

consistent with this nonlocal context. In order to show that the present nonlocal approach can effectively

regularize the problem, a localization analysis based on the dispersive analysis of the propagation of stress

waves is reported in Appendix A. Section 5 is devoted to the study of the material response to an assigned

total strain rate field. A material variational principle is presented and the nonlocal continuum tangent

operator is derived, showing its symmetry. In Section 6 the structural rate problem is examined and a
kinematical variational principle proposed. Section 7 describes the finite element implementation of the

model, discusses the iterative incremental procedure of Newton–Raphson and some specific aspects related

to the present nonlocal context. Section 8 is aimed to show numerical results obtained with the present

formulation. The first example is concerned with a classical 1-D bar in uniform traction whereas the second

example analyzes a plane stress indented plate subjected to traction. The results obtained are physical

meaningful and fully mesh independent. Finally some conclusive comments are reported in Section 9.

2. Nonlocal damage model

Let us consider a body that in its undeformed state occupy the domain V , of the three dimensional

Euclidean space, with boundary oV . We confine our formulation to the case of small induced strains and
admit that the straining process may promote linear isotropic damage so that the stress–strain relation is

given by

r ¼ ð1� �ddÞDe : e; ð1Þ

where De is the fourth order elastic moduli tensor, r and e are the stress and the strain tensor, respectively,
and finally �dd is the nonlocal isotropic damage variable. Eq. (1) is a nonlocal constitutive relation since �ddðxÞ
is obtained by a spatial weight average applied to a local damage variable, dðxÞ, by means of the following

integral relation

�ddðxÞ ¼
Z
V
W ðx; yÞdðyÞdV ðyÞ: ð2Þ

In Eq. (2) W ðx; yÞ is a space weight function which describes the mutual nonlocal damage interactions. For

physically sound formulations, the weight function W ðx; yÞ is required to be positive, to have its maximum

value for r ¼ jjx� yjj ¼ 0 (i.e. for x ¼ y) and to decrease monotonically and rapidly to zero for increas-
ing r (i.e. the nonlocal interactions are effective only in a small, but finite, neighbour of the field point).
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Moreover, since it is expected that uniform damage fields do not suffer alterations by the spatial average

procedure of Eq. (2) the following normalization condition is requiredZ
V
W ðx; yÞdV ðyÞ ¼ 1 8x 2 V : ð3Þ

In order to impose such a condition at every point of the body, including the points close to the body�s
boundary, where the effective contribution space domain is reduced, and then the integral of Eq. (3) is
penalized, Pijaudier-Cabot and Ba�zzant (1987) (see also Str€oomberg and Ristimnaa (1996) for nonlocal

plasticity) proposed a rather nonstandard weighting approach, posing

W ðx; yÞ ¼ 1

XrðxÞ
aðx; yÞ; ð4Þ

where

XrðxÞ ¼
Z
V

aðx; yÞdV ðyÞ: ð5Þ

aðx; yÞ is an attenuation function which depends only on the distance r and thus enjoys the property

aðx; yÞ ¼ aðy; xÞ. XrðxÞ, defined in Eq. (5), is called representative volume.

Typical choices for the attenuation function aðx; yÞ are:

aðx; yÞ ¼ kG expðjjx� yjj2=‘20Þ ð6Þ

or

aðx; yÞ ¼ kBð1� jjx� yjj2=R2Þ2 if jjx� yjj6R;
0 if jjx� yjj > R:

�
ð7Þ

The weight function of Eq. (6), which is the Gauss function, has an unbounded support, whereas Eq. (7),

which is denoted bell function, is defined for r ¼ jjx� yjj6R. In both cases ‘0 and R play the role of an

internal length parameter which controls the nonlocal spatial spread of the damage. It can be observed that

the representative volume XrðxÞ, when the point x is far from the body�s boundary, tends to become a

constant value, that can be denoted X1, since it is exactly the value that would be obtained if the body were
unbounded, i.e. extended as the entire Euclidean three dimensional space.

It is to remark that the weight function of Eq. (4) is not symmetric, i.e. W ðx; yÞ 6¼ W ðy; xÞ, and this is due

to the necessity to accommodate the condition of uniform field near to the boundaries. The fact that the

kernel of the integral Eq. (2) is not symmetric gave not so many problems in the original formulation,

Pijaudier-Cabot and Ba�zzant (1987), besides the accepted fact of the nonsymmetry of the tangent operators.

However, when Comi and Perego (2001b) tried to apply recent concepts of nonlocal thermodynamics,

(Polizzotto et al., 1998; Borino et al., 1999), they found unexpected problems which gave the impression

that a symmetric nonlocal damage formulation was theoretically appealing but not very suitable for
practical computational purposes.

In the present paper we introduce a new approach to the nonlocal integral averaging weight function

based on the following assumption:

W ðx; yÞ ¼ 1

�
� XrðxÞ

X1

�
dðx; yÞ þ 1

X1
aðx; yÞ; ð8Þ

where dðx; yÞ is the Dirac delta function and aðx; yÞ is the same attenuation function defined in Eq. (6) or

(7). Inserting Eq. (8) into the nonlocal definition given by Eq. (2) we obtain
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�ddðxÞ ¼ 1

�
� XrðxÞ

X1

�
dðxÞ þ 1

X1

Z
V

aðx; yÞdðyÞdV ðyÞ: ð9Þ

It can be recognized that the first term in Eq. (9) is a local term which is effective only for points near to the

body�s boundary. Actually, for points x far from the boundary XrðxÞ ! X1 and then the first boundary

correction term vanishes. The second term in Eq. (9) is the classical nonlocal symmetric term which is

expected for unbounded solids. In order to better realize the combined effects of the two terms of Eq. (9),

Fig. 1 reports, for a one-dimensional bar of fixed length in uniform state of damage, the two distinct

contributions; namely the first local term and the second nonlocal one.
Finally, the kernel defined in Eq. (8) is symmetric everywhere and, incidentally, coincides with the

classical one, defined in Eq. (4) for unbounded solids or for the points of bounded bodies sufficiently far

(compared to the internal length ‘0 or R) from the boundaries. Other relevant properties of the assumption

of Eq. (8) will be outlined in the following Sections.

Remark 1. A different view of the nonlocal relation of Eq. (8) can be obtained following a recent obser-

vation of Polizzotto (2002). It is in fact possible to rewrite Eq. (8) in the following form

�ddðxÞ ¼ dðxÞ þ 1

X1

Z
V

aðx; yÞ½dðyÞ � dðxÞ
dV ðyÞ: ð10Þ

This view is somehow also related to recent nonlocal plasticity models of Borino and Failla (2000) (see also

Jir�aasek and Rolshoven (in press) for a quite complete review on nonlocal plasticity models and related

consequences). Eq. (10) shows that the local damage field, dðxÞ, is corrected by a nonlocal value which is
obtained as a spatial average of the excess damage with respect to the damage value at the field point. It

transpires that the second nonlocal term is fully inactive for spatial uniform damage fields. It is also quite

interesting to observe that Eq. (10) is a real counterpart of the gradient formulations where the local field

is enriched by a spatial gradient term which is zero when there is no spatial variations.

3. Thermodynamic framework

In order to ensure that the nonlocal damage formulation does comply with thermodynamic principles,
let us assume the existence of a material Helmholtz free energy of the form

Fig. 1. Diagram showing the contribution of the first local term ð1� XrðxÞ=X1Þ and of the second term XrðxÞ=X1 for one-dimensional

bar in uniform state of damage. Results obtained using a Gauss attenuation function with internal length ‘0 ¼ 0:3L.
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wðe; �dd; nÞ ¼ weðe; �ddÞ þ winðnÞ; ð11Þ
where weðe; �ddÞ is the damage elastic strain energy that in case of linear isotropic damage models reads

weðe; �ddÞ ¼ 1
2
ð1� �ddÞe : De : e: ð12Þ

In Eq. (11) winðnÞ is the internal component of the Helmholtz free energy, i.e. the part of energy stored in

the micro-structure related to the changes of the material internal properties (i.e. damage strength). n is a

scalar kinematic internal variable that describes the damage hardening state. In the present formulation the

damage variable is treated as nonlocal, but it would be feasible to operate different choices (Jir�aasek, 1998),
as for instance Benvenuti et al. (2000, 2002) chose as nonlocal variable the internal variable n.

The integral regularization operation expressed in Eq. (2) can be formally written as

�ddðxÞ ¼ RðdÞ; ð13Þ
where R is the integral regularization operator applied to the damage field dðxÞ. In order to satisfy the

second thermodynamics principle, in the present nonlocal context, the Clausius–Duhem inequality must be

written in global form, i.e. extended to the entire body V , so that the overall instantaneous body energy

dissipation W is

W ¼
Z
V
ðr : _ee � _wwÞdV P 0: ð14Þ

Following the approach of Edelen and Laws (1971), Edelen et al. (1971), Polizzotto et al. (1998) and Borino

et al. (1999), Eq. (14) can be rewritten in a pointwise form, only after having introduced a nonlocality

residual function P ðxÞ, which takes into account the energy exchanges between neighbour particles. Then

the intrinsic dissipation at a given point is

D ¼ r : _ee � _ww þ P P 0 in V : ð15Þ
Being the solid a thermodynamically isolated system with reference to the interchange of energies described

by P , the following insulation condition holdsZ
V
P dV ¼ 0: ð16Þ

Expanding Eq. (15), taking into account Eqs. (11) and (12), it is

D ¼ r : _ee � ow
oe

: _ee � ow

o�dd
_�dd�dd � owin

on
_nn þ P P 0: ð17Þ

Eq. (17) must hold for any admissible deformation mechanism, either nondissipative elastic or irreversible

damaging one. Then, following well established procedures (see for instance Lemaitre and Chaboche

(1990)) the following state laws are obtained

r ¼ ow
oe

¼ ð1� �ddÞDe : e; ð18Þ

Y :¼ � ow

o�dd
¼ 1

2
e : De : e; ð19Þ

v :¼ owin

on
; ð20Þ

where Eq. (18) is the stress–strain relation as defined in Eq. (1). Eq. (19) defines the energy release rate Y
as the thermodynamic conjugate force of the nonlocal damage �dd. Finally, Eq. (20) defines, by means of
the internal free energy win, the internal variable v conjugate of n.
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By substituting Eqs. (18)–(20) into Eq. (17), the following explicit form for the dissipation function is

achieved

D ¼ Y _�dd�dd � v _nn þ P ¼ YRð _ddÞ � v _nn þ P P 0; ð21Þ
where the formal definition of nonlocal regularization operator of Eq. (13) has been used.

3.1. Nonlocality residual function

At every point where an irreversible damage mechanism develops we can always think that the local

dissipation must be driven by the local fluxes _dd and _nn, then it must be possible to write the dissipation in the

following bilinear form:

D ¼ X _dd � v _nn P 0 in V ; ð22Þ
where v has been defined in Eq. (20), whereas X is a (nonlocal) variable thermodynamically conjugated to

the local damage variable d and it is now needed to identify its structure. First of all X is nonlocal since it

must represent the energy exchanges that neighbour particles interchange during the damage mechanism

development. By comparing Eq. (21) with Eq. (22) the expression of the nonlocality residual function is

obtained as

P ¼ X _dd � YRð _ddÞ in V : ð23Þ
Next, employing the insulation condition of Eq. (16) it isZ

V
½X _dd � YRð _ddÞ
dV ¼ 0: ð24Þ

With reference to the second term of Eq. (24) it can be easily verified that the following Green-type identity

holdsZ
V
YRð _ddÞdV ¼

Z
V
RðY Þ _dd dV : ð25Þ

It is remarkable that, because of the symmetry of the function W ðx; yÞ of Eq. (8), the same regularization

operator apply also to the conjugate variable Y . This was not the case for the standard nonsymmetric

weight function defined in Eq. (4), as shown in Comi and Perego (2001b,c) and Benvenuti et al. (2000,

2002), where the adjoint operator R� was applied to Y with the consequent problems of lack of preservation

of uniform fields near the boundary as remarked by Comi and Perego (2001b). It can be stated that the

symmetry of the weight function implies a self adjoint integral regularization operator with the beneficial

properties that will be shown in the following.
Substituting the identity (25) in Eq. (24) givesZ

V
½X �RðY Þ
 _dd dV ¼ 0; ð26Þ

which, being true for any possible damage mechanism field _ddðxÞ, allows the identification of the variable X
as the integral regularization of the local energy release rate Y , namely

X ¼ �YY � RðY Þ: ð27Þ

In explicit form, Eq. (27) becomes

�YY ðxÞ ¼ 1

�
� XrðxÞ

X1

�
Y ðxÞ þ 1

X1

Z
V

aðx; yÞY ðyÞdV ðyÞ: ð28Þ
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Once defined the relation between X and Y , an explicit relation for the nonlocality residual function of

Eq. (23) and for the intrinsic dissipation function of Eq. (22) can be obtained, namely

P ¼ RðY Þ _dd � YRð _ddÞ in V ; ð29Þ

D ¼ RðY Þ _dd � v _nnP 0 in V : ð30Þ

Finally, it can be observed that the above developed nonlocal thermodynamics reasoning closely follows an

analogous procedure previously developed in the context of nonlocal plasticity models (Borino et al., 1999;

Borino and Failla, 2000).

4. Nonlocal damage activation function and associative damage flow laws

On the basis of the expression of the dissipation function of Eq. (30), it is assumed the existence of a

damage activation function /ð�YY ; vÞ which depends on the variables �YY ¼ RðY Þ and v since these are the

thermodynamic forces associated to the fluxes _dd and _nn in the dissipation function. Under the hypothesis of

generalized associative damage behaviour, the following relations can be written:

/ð�YY ; vÞ6 0; _kk P 0; _kk/ ¼ 0 in V ; ð31Þ

_dd ¼ o/ð�YY ; vÞ
o�YY

_kk; _nn ¼ � o/ð�YY ; vÞ
ov

_kk in V : ð32Þ

These are the usual laws for damage generalized standard materials, i.e. / besides being the damage ac-

tivation function, plays also the role of damage potential function for _dd and _nn. Eqs. (31) and (32) may

appear fully equivalent to the standard local damage relations, however it must be observed that the

presence of the variable �YY ¼ RðY Þ makes Eqs. (31) and (32) a system of relations spatially coupled and this

is the remarkable feature of nonlocal damage models.

In the following, without loosing generality, the damage activation function is written in the rather

simple form that follows:

/ð�YY ; vÞ ¼ �YY � v � Y0 6 0; _kk P 0; _kk/ ¼ 0 in V ð33Þ

and consequently the flow laws reads

_dd ¼ o/ð�YY ; vÞ
o�YY

_kk ¼ _kk; _nn ¼ � o/ð�YY ; vÞ
ov

_kk ¼ _kk in V : ð34Þ

From Eq. (33)1 the role played by v as a damage hardening variable appears clear, whereas Y0 is the initial
threshold for the first damage increment occurrence.

4.1. Principle of maximum damage dissipation

Once the associative behaviour has been postulated, it is then possible to define a principle of maximum

damage dissipation. This principle can be viewed as a direct extension to the damage context of a well

known principle of the plasticity theory (Simo and Hughes, 1998). The principle asserts that the material

state corresponding to an assigned damage mechanism is the one that maximize the intrinsic dissipation

energy (or net entropy production). If the mechanism is defined by the damage flow fields _dd and _nn diffuse
in V , then the principle reads

3628 G. Borino et al. / International Journal of Solids and Structures 40 (2003) 3621–3645



max
ð�YY ;vÞ

Z
V
ð�YY _dd � v _nnÞdV subject to : /ð�YY ; vÞ6 0 in V : ð35Þ

Problem (35) is analogous to the Hill theorem of the local associative plasticity, with the difference that it is

written in a global form, i.e. with reference to the entire domain V . Following standard procedures of the

optimization theory, it is possible to show that the Khun–Tucker conditions of the maximization problem

(35) are Eqs. (33) and (34). The nonlocal feature of problem (35) is hidden in the subsequent step aimed to

obtain the local value Y from the integral relation �YY ¼ RðY Þ, where �YY is given by the solution of problem

(35).
An alternative, and perhaps more interesting, form of the maximum damage dissipation principle can be

derived assuming as dissipative fluxes _�dd�dd and _nn. In this case the principle is written as

max
ðY ;vÞ

Z
V
ðY _�dd�dd � v _nnÞdV subject to : / ¼ RðY Þ � v � Y0 6 0 in V : ð36Þ

Looking for the extremal conditions by means of the Lagrangian multiplier method, the Lagrangian

functional can be written

L ¼ �
Z
V
ðY _�dd�dd � v _nnÞdV þ

Z
V

_kkðRðY Þ � v � Y0ÞdV ; ð37Þ

where _kkP 0 is the relevant Lagrangian multiplier. Then, the first variation of the Lagrangian of Eq. (37)

reads

dL ¼ �
Z
V
ðdY _�dd�dd � dv _nnÞdV þ

Z
V

_kkðRðdY Þ � dvÞdV þ
Z
V

d _kk/dV : ð38Þ

Considering that, by Eq. (25), the following identity holdsZ
V

_kkRðdY ÞdV ¼
Z
V
Rð _kkÞdY dV ; ð39Þ

Eq. (38) reduces to

dL ¼
Z
V

dY ðRð _kkÞ � _�dd�ddÞdV þ
Z
V

dvð _nn � _kkÞdV þ
Z
V

d _kk/dV ; ð40Þ

which produce as extremal conditions

_�dd�dd ¼ Rð _kkÞ; _kk ¼ _nn in V ; ð41Þ

/ðRðY Þ; vÞ6 0; _kk P 0; / _kk ¼ 0 in V : ð42Þ

From Eq. (42)1 follows that _kk ¼ _dd.

5. Material rate response

In this section the material response to an assigned strain rate field, _eeðxÞ, is investigated. The material,

considered as an ensemble of continuum material points, is in a known initial state characterized by rðxÞ,
eðxÞ, Y ðxÞ, dðxÞ, vðxÞ; also let Vd � V be the region where /ð�YY ; vÞ ¼ 0. The material response is elastic (and
of local type) in Ve ¼ V � Vd , elasto-damaging in Vd where it must be _//6 0, _kkP 0 and _// _kk ¼ 0. Expanding

the damage activation function in its rate form we have
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_//ðRðY Þ; vÞ ¼ o/
oRðY ÞRð _YY Þ þ o/

ov
_vv ¼ Rð _YY Þ � _vv6 0 in Vd : ð43Þ

The state laws of Eqs. (18)–(20), rewritten in rate form, reads

_YY ¼ e : De : _ee � _‘‘e; _vv ¼ hðnÞ _nn ¼ hðnÞ _kk; ð44Þ

where the definition hðnÞ � o2win=on
2 has been adopted. Substituting Eq. (44) into Eq. (43) the complete

incremental damage problem is obtained as

_// ¼ Rð _‘‘eÞ � hðnÞ _kk6 0; _kkP 0; _kk _// ¼ 0 in Vd : ð45Þ

The complementarity problem expressed by Eq. (45) admits a variational representation by a minimum

principle as the following

min
_kk

P½ _kk
 :¼
Z
Vd

1

2
hðnÞ _kk2

�
�Rð _‘‘eÞ _kk

�
dV ; subject to _kk P 0 in Vd : ð46Þ

The stationarity conditions of problem (46) give the damage multiplier field _kkðxÞP 0 that satisfies Eq. (45).

The term hðnÞ � o2win=on
2 is positive for every value of n, since it represents a damage hardening modulus,

i.e. it is expected an increase of the damage elastic domain (in the strain space) as damage develops. The

positiveness of the coefficient of the quadratic functional (46) ensures that the second variation of the

functional, i.e. d2P ¼
R
Vd
hðnÞðd _kkÞ2 dV is positive and then the functional is convex. Finally, the convexity

of the functional guaranties the existence and the uniqueness of the solution field _kkðxÞ.

Remark 2. At difference of the most standard nonlocal formulations (Str€oomberg and Ristimnaa, 1996;

Borino et al., 1999; Borino and Failla, 2000; Benvenuti et al., 2000, 2002), the truly nonlocality features in

Eqs. (45) and (46) are carried by Rð _‘‘eÞ, that is

Rð _‘‘eÞ ¼ 1

�
� XrðxÞ

X1

�
eðxÞ : De : _eeðxÞ þ 1

X1

Z
V

aðx; yÞeðyÞ : De : _eeðyÞdV ðyÞ; ð47Þ

which depends on the assigned driving strain rate field, _eeðxÞ. Eq. (47), once computed at every point of the

body, produces a problem which is formally equivalent to the classical local damage loading problem.

In particular the solution of Eq. (45) or Eq. (46) is

_kk ¼ 1

hðnÞ hRð _‘‘eÞi in V ; ð48Þ

where the MacAuley operator, hxi ¼ ðxþ jxjÞ=2 has been used.

Remark 3. The very special feature outlined in the previous Remark is rooted on the fact that when the
damage is chosen as nonlocal variable, the relations derived for linear isotropic damage laws are much

simpler than the one obtained choosing as nonlocal variable the internal variable n (as in Benvenuti et al.,

2000, 2002) and even simpler than the most used nonlocal plasticity models (Str€oomberg and Ristimnaa,

1996; Borino et al., 1999; Borino and Failla, 2000; Jir�aasek and Rolshoven, in press), where a fully nonlocal

coupling is present. The remarkable simplification, already present in the original model of Pijaudier-Cabot

and Ba�zzant (1987), is only due to the linearity of the isotropic damage model, which, through the state

equation (19), makes Y not dependent on damage, but only on the local strain eðxÞ. If, for instance, a

quadratic damage law were adopted, then the damage state equation (19) would express Y as a function of
the nonlocal damage �dd ¼ RðdÞ, hence an integral term in _kkðxÞ would be present in Eq. (45). The problem
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(46) would be an integral variational theorem and finally Eq. (48) would become a Fredholm integral

equation in the unknown field _kkðxÞ, to be solved following more complex strategies, similar to those

adopted in Borino et al. (1999).

5.1. Nonlocal continuum tangent moduli tensor

The incremental constitutive law can be effectively expressed by means of stress–strain rate relations in
which the continuum tangent operator is defined. Let us write the stress–strain relation of Eq. (1) in rate

form

_rrðxÞ ¼ ð1� �ddðxÞÞDe : _eeðxÞ �De : eðxÞ _�dd�ddðxÞ: ð49Þ

Substituting the definition of Eq. (9) in Eq. (49) for �dd, the following relation is obtained

_rrðxÞ ¼ ð1� �ddðxÞÞDe : _eeðxÞ �De : eðxÞ 1

��
� XrðxÞ

X1

�
_kkðxÞ þ 1

X1

Z
V

aðx; yÞ _kkðyÞdV ðyÞ
�
: ð50Þ

Next, substituting _kk from Eq. (48) in Eq. (50), the following integral continuum relation follows:

_rrðxÞ ¼
Z
V
Ded : _eeðyÞdV ðyÞ; ð51Þ

where Dedðx; yÞ is the nonlocal continuum tangent operator having the following structure

Dedðx; yÞ ¼ ð1� �ddðxÞÞDedðx; yÞ � fALðx; yÞ þ ANLðx; yÞg½ðDe : eðxÞÞ � ðeðyÞ : DeÞ
; ð52Þ

where the following definitions have been adopted

ALðx; yÞ ¼ 1

�
� XrðxÞ

X1

�
LðxÞdðx; yÞ; ð53Þ

ANLðx; yÞ ¼
1

X1
LðxÞð þ LðyÞÞaðx; yÞ þ 1

X2
1

bðx; yÞ ð54Þ

with

LðxÞ ¼ 1

hðxÞ 1

�
� XrðxÞ

X1

�
; ð55Þ

bðx; yÞ ¼
Z
V

1

hðzÞ aðx; zÞaðz; yÞdV ðzÞ: ð56Þ

It can be easily verified that the presented formulation conducts to a nonlocal continuum tangent moduli

tensor that enjoys the relevant property Dedðx; yÞ ¼ Dedðy; xÞ.
It is also interesting to observe that the nonlocal continuum tangent moduli tensor of Eq. (52) is obtained

as the sum of two terms. The first term is the secant moduli tensor, whereas the second term is obtained as

sum of two more contributions. The first contribution, related to ALðx; yÞ, gives the local damage loading
effect; the second contribution, related to ANLðx; yÞ, is concerned with the nonlocal damage loading con-

ditions, i.e. the effects which are promoted by the damage loading of neighbour points.
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6. Structural rate response

The elastic-damage solid body occupying the domain V 2 R3, with boundary oV ¼ S ¼ SU [ ST , con-
stitutively analyzed in the previous Sections, is subjected to body forces b in V , surface tractions t on the
free surface ST and to imposed displacements u� on the constrained surface SU . All the external actions vary

in a quasi-static manner and cause the body to undergo small displacements and strains. We are now in-

terested to the response of the body to a given load rates as _bb in V , _tt on ST and _uu� on SU . Assuming known

the initial state, it is possible to identify the region Vd � V where the damage limit condition has been

attained (i.e. where / ¼ 0), whereas / < 0 in the complementary region, V c
d . The equations governing the

structural rate-type nonlocal boundary value problem read

_ee ¼ rs _uu in V ; _uu ¼ _uu� on SU ; ð57Þ

r � _rr þ _bb ¼ 0 in V ; _rr � n ¼ _tt on ST ; ð58Þ

_rr ¼ ð1� �ddÞDe : _ee �De : e _�dd�dd in V ; ð59Þ

_vv ¼ hðnÞ _nn; _YY ¼ e : De : _ee; ½ _�YY�YY ¼ Rð _YY Þ
 in V ; ð60Þ

_// ¼ _�YY�YY � _vv6 0; _kkP 0; _kk _// ¼ 0 in Vd ; ð61Þ

_dd ¼ _nn ¼ _kk; _�dd�dd ¼ Rð _kkÞ in V : ð62Þ
In the previous relations, n denotes the unit external normal to S and rs is the symmetric part of the

gradient operator r. Eq. (57) are the compatibility relations, Eq. (58) are the equilibrium relations, Eqs.

(59) and (60) are the rate-form state equations and finally Eqs. (61) and (62) are the damage loading/

unloading (or evolutive) laws.
The structural rate response can be obtained solving the set of relations (57)–(62). As it always happen in

solid mechanics, the actual closed form solution can be achieved only for very few simple problems and in

order to achieve practical solutions a finite increment approach together with a finite element space dis-

cretization is adopted. In this view it is of interest to show that problem (57)–(62) can be characterized

by the following kinematic-type variational principle.

L½ _uu; _kk
 ¼
Z
V

1

2
rs _uu : ð1

�
� �ddÞDe : rs _uu�Rð _kkÞrsu : De : rs _uu

�
dV þ 1

2

Z
V
hðnÞ _kk2 dV

�
Z
V

_bb � _uudV �
Z
ST

_tt � _uudS; ð63Þ

where the unknown kinematic fields _uu; _kk satisfy the following constraint equations

_uu ¼ _uu� on SU ; ð64Þ

_kk P 0 in Vd ; _kk ¼ 0 in V =Vd ; ð65Þ
The variational principle states that the constrained fields _uu, _kk that make L stationary together with some

related _ee, _rr, _YY , _vv, solve the structural rate problem of Eqs. (57)–(62) and conversely the solution ( _uu, _kk, _ee, _rr,
_YY , _vv) to the latter rate problem is such that the subset _uu; _kk makes L stationary.

In order to prove the variational principle, let us first consider the augmented Lagrangian functional

La½ _uu; _kk; _pp
 ¼ L½ _uu; _kk
 �
Z
SU

_pp � ð _uu� _uu�ÞdS; ð66Þ
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where _pp is the appropriate (rate traction-like) Lagrangian multiplier. The first variation of La, after the

application of the divergence theorem and of the Green-type identity observed in Eq. (39), proves to be

dLa ¼ �
Z
V
fr � ½ð1� �ddÞDe : rs _uu�Rð _kkÞDe : rsu
 þ _bbg � d _uudV

�
Z
V
fRðrsu : De : rs _uuÞ � hðnÞ _kkgd _kkdV þ

Z
ST

f½ð1� �ddÞDe : rs _uu�Rð _kkÞDe : rsu
 � n� _ttg � d _uudS

þ
Z
SU

f½ð1� �ddÞDe : rs _uu�Rð _kkÞDe : rsu
 � n� _ppg � d _uudS þ
Z
SU

f _uu� _uu�g � d _ppdS: ð67Þ

The conditions for which dLa ¼ 0 for any arbitrary admissible variations, that are the Euler-Lagrange

equations of the variational principle (63), turn out to be equivalent to the rate structural problem, Eqs.

(57)–(62), with the Lagrangian multiplier vector _pp being identified as the reactive traction on Su. In other

words, the stationary solution solves the structural rate problem of Eqs. (57)–(62).

The converse part of the theorem can be proved by observing that the fields ð _uu; _kkÞ pertaining to the

solution to the structural rate problem, together with _pp ¼ _rr � n on SU , make dLa of Eq. (67) vanishes for

arbitrary variations and thus Lð _uu; _kkÞ is stationary.

7. Finite element incremental problem

As every continuum nonholonomic dissipative problem, the practical resolution of the rate problem

requires two different discretization techniques. The first is related to the integration along the loading path

of the rate constitutive equations, and this is usually achieved by the Euler backward difference scheme. The

second discretization is the space discretization and typically is obtained using finite element techniques.

Since, in this specific nonlocal context, another spatial integration procedure has to be carried out, it is very

convenient to use the same finite element mesh and the related Gauss points for performing also the

nonlocal variables evaluation.
The standard relation for the finite element discretized structural equilibrium at the end of the loading

step, ðn; nþ 1Þ, reads

Fnþ1
int ¼

Z
V
BTðxÞrnþ1ðxÞdV ; ð68Þ

where Fnþ1
int is the nodal load vector computed at the end of the step, BðxÞ is the strain–displacement

operator and rnþ1 is the stress vector computed at the end of the step. The integral is then approximated by

a sum over the Gauss integration points of the elements as

Fnþ1
int ¼

XNe
e¼1

XNge
ge¼1

wgeB
eT ðxgeÞrnþ1ðxgeÞ ¼

XNg
g¼1

wgB
T
gr

nþ1
g ; ð69Þ

where Ne is the total number of finite elements, Nge and Ng are the number of Gauss points for element and

the total number of Gauss points of the structure. xge is the coordinate vector of the integration points and

finally wg is the Gauss integration weight coefficient. In the last term of Eq. (69) the index g stands for the

relevant term computed at the point xg.
The nonlinear system of equations of Eq. (69) is then addressed by a Newton–Raphson iterative scheme

consisting in an elastic predictor phase and a nonlocal corrector phase. (The procedure closely follows the
classically procedure of computational plasticity, see e.g. Simo and Hughes (1998).) The predictor phase is a

linear elastic analysis that produces a displacement vector and then a strain distribution at the end of the
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step for every Gauss point, enþ1
g , which is then the driving term for imposing the constitutive consistency

in the nonlocal damage corrector phase.

In order to impose the nonlocal damage law at the end of the step the constitutive relations are inte-

grated by the Euler backward scheme, namely

rnþ1
g ¼ ð1� �ddnþ1

g ÞDeenþ1
g ; ð70Þ

vnþ1
g ¼ owin

on






nþ1

� vng þ f ðDkgÞ; ð71Þ

Y nþ1
g ¼ 1

2
enþ1T
g Deenþ1

g ; ð72Þ

Dkg ¼ Ddg ¼ Dng; ð73Þ

/nþ1
g ¼ �YY nþ1

g � vnþ1
g � Y 0

6 0; Dkg P 0; /nþ1
g Dkg ¼ 0; ð74Þ

where f ðDkgÞ is a function containing all the terms in the unknown Dk. Moreover, the nonlocal integral

relations of Eqs. (27) and (2) are computed following the same approximation based on the finite element

mesh and Gauss integration rule, namely

�YY nþ1
p ¼

XNg
q¼1

wqWpqY nþ1
q ¼ 1

2

XNg
q¼1

wqWpqe
nþ1T
q Deenþ1

q ; ð75Þ

�ddnþ1
g ¼ �ddng þ

XNg
‘¼1

w‘Wg‘Dk‘: ð76Þ

Substituting Eqs. (75), (71) and (72) in Eq. (74), the step consistency condition is obtained, namely

/nþ1
g ¼ /nþ1ðtrÞ

g � f ðDkgÞ6 0; Dkg P 0; /nþ1
g Dkg ¼ 0; ð77Þ

where the following position holds

/nþ1ðtrÞ
g � �YY nþ1

g � vng � Y 0; ð78Þ

which has to be considered a trial elastic value. The solution of problem (77) can be easily achieved fol-

lowing a classical approach of computational plasticity (Simo and Hughes, 1998), namely if /nþ1ðtrÞ
g > 0

then the damage multiplier increment is evaluated solving for the unknown Dkg the nonlinear scalar

equation /nþ1ðtrÞ
g � f ðDkgÞ ¼ 0.

Once the local complementarity problem has been solved at every Gauss integration point, the nonlocal
damage distribution �ddnþ1

g , is evaluated by Eq. (76) and then the updated stress (complying damage con-

stitutive equations), rnþ1
g , is computed by Eq. (70). Finally this stress is inserted into Eq. (69) and the

resulting out of balance force is utilized for a new elastic predictor phase of the iterative procedure.

It is remarkable that the damage correction phase is performed at each integration point and that the

nonlocal nature of the problem is displayed only by the fact that the damage driving force �YY nþ1
g is trivially

computed by means of Eq. (75) using the (known) strains of all the neighbour Gauss points. This sim-

plification is due only to the choice of the damage variable as nonlocal variable and also to the fact that a

simple linear isotropic damage law has been adopted. Usually the damage corrector phase requires a more
complicated nonlocal iteration procedure (Benvenuti et al., 2000, 2002).
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7.1. Symmetric consistent tangent stiffness matrix

The predictor phase of the Newton–Raphson iterative scheme can be performed by using the initial

stiffness matrix, the secant matrix, or alternatively by means of the tangent stiffness matrix obtained by
linearizing consistently with the Euler backward difference scheme, the nonlinear equilibrium relations. It is

well known that the consistent tangent stiffness matrix significantly reduces the number of iterations en-

suring a quadratic asymptotic rate of convergence (Simo and Hughes, 1998). In the following, the proce-

dure originally proposed by Jir�aasek (2001), Patz�aak and Jir�aasek (2001) and Jir�aasek and Rolshoven (in press)

and applied also by Comi and Perego (2001b,c), is utilized in order to derive the consistent tangent stiffness

matrix.

Let us rewrite the finite element discretized equilibrium equation (69) in the following equivalent form

F int ¼
XNg
p¼1

wpB
T
p ð1� �ddpÞDeep; ð79Þ

where the superscript nþ 1 has been omitted, all the quantities being evaluated at the end of the same
loading step. Observing that the strain is related to the structural nodal displacement vector U by the

compatibility relation ep ¼ BpU , Eq. (79) transforms into

F int ¼
XNg
p¼1

wpð1� �ddpÞK e
pU ; ð80Þ

where K e
p :¼ BT

pD
eBp describes the undamaged elastic stiffness contribution of the integration point xp to

the structure elastic stiffness. The tangent stiffness matrix is then defined by the following relation

K ed :¼
oF int

oU
¼
XNg
p¼1

wpð1� �ddpÞK e
p �

XNg
p¼1

wpK
e
pU

o�ddp
oU

 !T

: ð81Þ

From the definition of nonlocal damage of Eq. (2), spatially discretized in the form given by Eq. (76), we

obtain

o�ddp
oU

¼
XNact
g

q¼1

wqWpq
odq
oU

; ð82Þ

where the summation is extended to the Gauss points that are damage active, i.e. where the trial value given

by Eq. (78) is greater than zero.

The variation of the damage loading condition for the active points computed at the end of the step

reads

d/q ¼
o/
o�YY






q

d�YYq þ
o/
ov






q

dvq ¼ 0: ð83Þ

The variation of the internal variable v can be related, by the state Eq. (20) and the flow law of Eq. (34)2, to

the damage multiplier variation dk by means

dvq ¼ � o2win

on2






q

o/
ov






q

dkq; ð84Þ
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which substituted into Eq. (83) allows the damage multiplier variation to be derived as

dkq ¼ Aq
o/

o�YY






q

d�YYq with Aq

2
4 ¼ o/

o�YY






q

o2win

on2






q

o/

o�YY






q

 !�1
3
5: ð85Þ

From the damage flow law of Eq. (34)1 follows

ddq ¼
o/
o�YY






q

dkq ¼ Hqd�YY with Hq

"
¼ o/

o�YY






q

Aq
o/
o�YY






q

 !#
; ð86Þ

which, considering the definition of Eq. (27) and its space discretized form of Eq. (75), becomes

ddq ¼ Hq

XNg
‘¼1

w‘Wq‘e
T
‘ D

ede‘ ¼ Hq

XNg
‘¼1

w‘Wq‘U
TBT

‘ D
eB‘dU ¼ Hq

XNg
‘¼1

w‘Wq‘U
TK e

‘dU : ð87Þ

Substituting Eq. (87) in Eq. (82), the following relation is obtained

odq
oU

� �T

¼ Hq

XNg
‘¼1

w‘Wq‘UK e
‘; ð88Þ

such that, substituting Eq. (88) into Eq. (81), the expression of the tangent stiffness matrix becomes

K ed ¼
XNg
p¼1

wpð1� �ddpÞK e
p �

XNg
p¼1

XNact
g

q¼1

XNg
‘¼1

wpwqw‘WpqWq‘K
e
pUUTK e

‘: ð89Þ

Finally, observing that the first term is the secant stiffness matrix K sec, and defining a vector

br
p ¼ BT

pD
eBpU ¼ K e

pU , Eq. (89) can be rewritten in the following equivalent form

K ed ¼ K sec �
XNg
p¼1

XNact
g

q¼1

XNg
‘¼1

wpwqw‘WpqWq‘b
r
pb

rT
‘ : ð90Þ

It can be recognized that the consistent tangent stiffness matrix obtained in Eq. (90) is symmetric. The

symmetry comes from a correct definition of an associative rule for nonlocal dissipative phenomenon,

namely the thermodynamically justified framework constructed in Sections 3 and 4 plays a fundamental

role for the symmetry of the tangent stiffness matrix as well as for the symmetry of the continuum tangent

moduli tensor found in Eq. (52).

8. Numerical results

The constitutive model previously developed and the overall nonlocal incremental finite element pro-

cedure presented in the last Section has been implemented in the research oriented FE program FEAP

written by R.L. Taylor (see Zienkiewicz and Taylor, 2000). Two finite elements have been implemented.

The first is a one-dimensional bar and the second is a four node plain stress two-dimensional finite element.

In the following subsections the numerical applications related to one- and two-dimensional applications
are discussed.
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8.1. One-dimensional bar in tension

The first numerical application regards a one-dimensional bar in simple uniform traction. The bar,

depicted in Fig. 2, is of length L ¼ 100 mm and of unitary cross section area. The internal energy chosen for
the present application is the one recently proposed by Comi and Perego (2001c) for plain concrete

winðnÞ ¼ Kð1� nÞ
XN
j¼1

N !
j!

lnj
c�

1� n

� �
; ð91Þ

where K, c� and N are material parameters and, by definition, 0! ¼ 1. Fig. 3 shows the local stress–strain

relation in traction obtained considering that v ¼ owin=on ¼ K lnN ðc�=ð1� nÞÞ and using the local damage

activation condition Y � v ¼ 0. As shown in Fig. 3, the local model is such that, in one-dimension, the

stress vanishes only asymptotically, for e ! 1, but with a bounded fracture energy density.

The numerical simulation of the uniaxial tensile test has been performed by one dimensional finite

elements with constant strain and linear displacement interpolation functions. The analysis has been car-
ried out under displacement control and an arch-length method has been used in order to control possible

snap-back branch in the structural response of the bar. The material parameters K, c� and N have been

chosen such to reproduce the properties of the concrete employed in a 2-D traction experiment test per-

formed by Hassanzadeh (1991), hence assuming the Young modulus E ¼ 36000 MPa, the tensile strength

Fig. 2. Sketch of one-dimensional bar in simple tension.

Fig. 3. One-dimensional stress–strain curve obtained by the model of Comi and Perego (2001a,b,c) with different values of the

coefficient N .
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rf ¼ 3:35 MPa, the appropriate parameter values are K ¼ 1:605632� 10�11 MPa, c� ¼ 148:413159, and
N ¼ 10. Moreover, in order to trigger the damage localization, the cross section area of the central element

has been reduced of 0.001%.

The attenuation function employed in the analysis is the Gauss function e�pðr=‘0Þ2 and the internal length
‘0 ¼ 4:5 mm. It is of interest to observe the different role played by N and by the internal length ‘0. Namely,

N influences the fragility of the overall structural response, that is, the fragility increases when N decreases,

while the internal length ‘0 affects the width of the damage localized zone.

The force–displacement response of the bar is reported in Fig. 4, and it can be observed that the solution

correctly converges as the number of elements is uniformly increased. Fig. 5 depicts the evolution of the

damage distribution inside the bar as the imposed displacements at the boundaries increase.

8.2. 2-D plate in tension

The second numerical application regards a direct traction test of a four notched concrete sample of

which experimental tests have been performed by Hassanzadeh (1991). Fig. 6 shows the geometry and the

loading condition of the sample. The numerical analysis has been carried out under the hypothesis of plane
stress condition and using the same constitutive model and material parameters presented in the previous

Section 8.1.

The analysis has been performed for the four different meshes shown in Fig. 7. The first two discreti-

zations, mesh A and B, are regular meshes with 222 and 968 elements respectively; the last two meshes,

mesh C and D have been constructed realizing a finer discretization in the central zone with 864 and 2320

elements respectively. Fig. 8 shows a surface plot reporting the ratio XrðxÞ=X1 relative to the data of mesh

B. It can be observed that for interior points it is equal to unity (with some numerical approximation in the

zones where the mesh changes density) whereas it decreases as the points approaches the body�s boundary.
In order to compare numerical and experimental results the force–displacement curves have been

evaluated, looking for the resultant reaction, R, at the base where the displacement is imposed and the

relevant notch opening. In Fig. 9 the force–displacement curves, obtained for the four meshes, are reported

and compared to the experimental curve of Hassanzadeh (1991). It can be observed a good agreement

between the numerical and experimental data and a very satisfactory mesh independent result.

Fig. 4. Force–displacement response curves obtained by the finite element analyses with two different discretization meshes.
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The numerical analysis has also shown that the damage starts at the notches, propagates to the center
zone of the specimen and finally it extends to all the central zone up to a full formation of a damage band.

Fig. 10 shows the regularized damage contours at two different load levels. Namely, Fig. 10a shows the

damage distribution for the loading level near the peak; Fig. 10b shows the damage distribution in the

structural softening branch and it can be observed that the localized damage distribution is fully developed.

The two conditions correspond respectively to the points (a) and (b) reported in Fig. 9.

Fig. 5. Damage localization profiles in the bar for increasing assigned displacement at the boundaries.

Fig. 6. Two-dimensional concrete specimen subjected to direct tension test. Geometry and load condition.
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(a) (b)

(c) (d)

Fig. 7. Four different meshes adopted in the finite element simulations: Meshes: (a) 222 elements, (b) 968 elements, (c) 864 elements,

(d) 2320 elements.

Fig. 8. Surface plot showing the distribution of XrðxÞ=X1 for the structure of Fig. 6 discretized with the mesh B.
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9. Summary and conclusions

A new formulation for nonlocal damage models has been presented. This formulation closely follows a

recent thermodynamic consistent approach that requires the definition of a damage nonlocal variable in

conjunction with a nonlocal measure of the energy release rate. In order to preserve uniform damage fields,

as well as uniform energy release rate fields, a nouvelle definition of the nonlocal integral operator has been

presented. At difference with the most common approach, that makes use of a spatial weight function that

changes its shape as the considered material point approaches the boundaries of the body, the present
formulation redefines the nonlocal integral operator as the sum of a variable local contribution plus a

standard nonlocal term with fixed space weight function. The difference between the present new approach

and the traditional one becomes apparent only getting close to the boundaries, whereas far from the

boundaries, or in case of unbounded media, it is shown that the local contribution vanishes and then this

formulation is fully equivalent to the classical one.

Fig. 10. Damage contour maps related to the solution obtained with the mesh D. (a) Damage distribution near the peak of the force–

displacement curve (point (a) of Fig. 9). (b) Damage distribution in the softening branch of the force–displacement curve (point (b) of

Fig. 9).

Fig. 9. Diagram showing traction reaction R versus the open displacement at the notch for the four meshes of Fig. 7. The experimental

results obtained by Hassanzadeh (1991) are also reported for comparison.
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The definition of self-adjoint nonlocal integral operator, in conjunction with the overall nonlocal

thermodynamic consistency and the damage associative rules, has permitted the derivation of a nonlocal

damage theory that enjoys many valuable properties as, for instance, the symmetry of the tangent operators

and the existence of variational principles for the material and the structural rate response characterization.
The implementation of the model in a standard finite element program has been also presented, showing

the capacity of the model to reproduce physically meaningful and mesh objective numerical results.

The specific damage constitutive model presented in the numerical applications is quite simple and it is

intended only for the discussion of the new general nonlocal damage framework presented. In a forth-

coming paper the issue of a damage model able to describe the unilateral tension-compression behaviour,

the mixed shear damage modes and also the production of permanent strains of plastic nature will be

addressed.
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Appendix A. One-dimensional localization analysis

In this appendix the capacity of the nonlocal damage model to re-establish a well-posed problem is

investigated analyzing the propagation speed of stress acceleration waves. Namely it is necessary to ensure

that such velocity does not become imaginary.

Following the approach of Larsy and Belytschko (1988) and Pijaudier-Cabot and Benallal (1993), and

also considering a recent contribution of Comi and Rizzi (2000), the study of the propagation of accel-
eration waves is here considered for a one-dimensional bar of infinite length. Considering the bar in an

initial uniform state of strain and damage (�ddðxÞ ¼ dðxÞ ¼ const. eðxÞ ¼ const.) the stress–strain relation

of Eq. (49) written for one-dimensional problems reads

_rr ¼ ð1� dÞE o _uu
ox

� Ee _�dd�dd: ðA:1Þ

The equation of motion in rate form linearized about the uniform initial state is

o _rr
ox

¼ q
o2 _uu
ot2

: ðA:2Þ

Substituting Eq. (A.1) in Eq. (A.2) and considering the explicit form of the integral regularization operator

for an infinite length bar, the following relation is obtained

ð1� dÞE o2 _uu
ox2

� Ee
o

ox

Z 1

�1
aðx� yÞ _ddðyÞdy � q

o2 _uu
ot2

¼ 0: ðA:3Þ

Let us now consider a linear comparison one-dimensional solid where the linearization is realized under the

assumption of damage loading and in the initial condition of uniform damage and uniform strain field as

before. The damage loading consistency condition requires

_// ¼ _�YY�YY � _vv ¼
Z 1

�1
aðx� yÞeðyÞE o _uu

ox







y

dy � hðnÞ _dd ¼ 0; ðA:4Þ
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which considering the uniform initial strain state can be rewritten as

_// ¼ _�YY�YY � _vv ¼ Ee
Z 1

�1
aðx� yÞ o _uu

ox







y

dy � hðnÞ _dd ¼ 0: ðA:5Þ

Let us consider for the equation of motion, Eq. (A.3), and for the damage consistency condition, Eq. (A.5),

harmonic wave solutions of the following form

_uuðx; tÞ ¼ _uu0eiqðxþctÞ; _ddðx; tÞ ¼ _dd0eiqðxþctÞ; ðA:6Þ

where q is a wave number and c is the speed of propagation. Substituting Eqs. (A.6), and their partial

derivatives with respect to x and t, into Eqs. (A.3) and (A.5), the following relations are obtained

fðqq2c2 � ð1� dÞEq2Þ _uu0 � ðiqAðqÞEeÞ _dd0geiqðxþctÞ ¼ 0; ðA:7Þ

fðiqAðqÞEeÞ _uu0 � hðnÞ _dd0geiqðxþctÞ ¼ 0; ðA:8Þ

where AðqÞ is the Fourier transform of aðrÞ, namely AðqÞ ¼
R1
�1 aðrÞe�iqrdr. Eqs. (A.7) and (A.8) must be

verified for every instant t and at every point x. Then, Eqs. (A.7) and (A.8) can be viewed as an homo-

geneous linear system of two equations, that in order to have a solution distinct from the trivial one, must

have the determinant of the coefficient matrix equal to zero, namely

c2qhðnÞ � ð1� dÞhðnÞE þ A2ðqÞE2e2 ¼ 0; ðA:9Þ

which solved with respect to the speed c gives

c ¼ ce

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ee2A2ðqÞ

ð1� dÞhðnÞ

s
; ðA:10Þ

where ce ¼ ðð1� dÞE=qÞ1=2 is the elastic speed in case of unloading. Eq. (A.10) shows the dispersive nature

of the nonlocal damage media. In fact, the speed of propagation depends on the wave number q, which
implies that, if a general shape stress wave travels along the bar, the wave shape will change since each

harmonic component would travel at a different speed.

It is of interest to find a wave number qcr which makes the propagation speed vanishing, i.e. c ¼ 0. This

specific value is obtained solving the equation

A2ðqcrÞ ¼
ð1� dÞhðnÞ

Ee2
: ðA:11Þ

For instance in case of Gauss attenuation function aðrÞ ¼ e�pr2=‘2
0 , which gives as Fourier transform

AðqÞ ¼ e�q
2‘2

0
=4p, the critical wave number is

qcr ¼
ffiffiffiffiffiffi
2p

p

‘0
ln

Ee2

ð1� dÞhðnÞ

� �� �1=2
: ðA:12Þ

A better understanding of the localization analysis is achieved by defining the related critical wave length,

Kcr ¼ 2p=qcr, that with reference to Eq. (A.12) gives

Kcr ¼
ffiffiffiffiffiffi
2p

p
‘0 ln

ð1� dÞhðnÞ
Ee2

� �� �1=2
: ðA:13Þ

It is worth noting that waves with wave length K < Kcr do not propagate in the bar. Then, Kcr can be

considered a measure of the width of the static damage active localization band. For instance, considering
the internal energy of Comi and Perego (2001c) given in Eq. (91), for which (choosing the coefficients K, n,
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c� as in the application of the Section 8.1), hðnÞ ¼ Kn=ð1� dÞ lnn�1ðc�=ð1� dÞÞ, Fig. 11 shows the evolution

of Kcr as function of the initial damage state obtained by Eq. (A.13) compared to the width of the damage

active zone obtained checking numerically the damage active Gauss points in the finite element analysis.

A very good agreement can be observed.
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